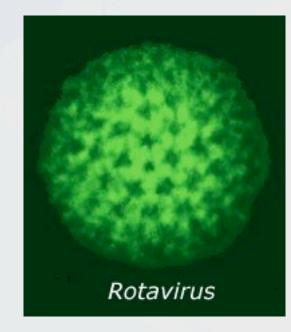


Rotavirus epidemic & its vaccination

E. Shim¹, C. Castillo-Chavez¹, H.T. Banks², Z. Feng³ and M. Martcheva⁴

> ¹Arizona State University ²North Carolina State University ³Purdue University ⁴University of Florida

Goals


Study seasonality of annual epidemics: Compare two types of vaccines

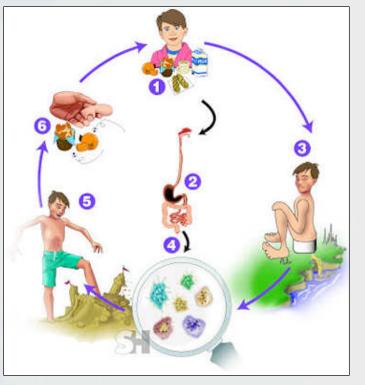
Set up an age-structure epidemic model of rotavirus epidemic

- Numerical implementation of an age-structure model.
- Immunological issues: Passive immunity and vaccine

Morphology of rotavirus

- Family Reoviridae
- Wheel-like distinct appearance under EM (Latin, "rota"=wheel)

- 70-85 nm diameter
- Non-enveloped, double-shelled viruses

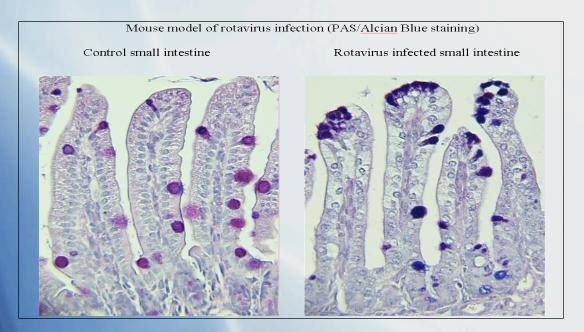

(Picture Source: http://www.sourcemolecular.com/virus2.jpg)

Epidemiology (1)

- 95% of children worldwide are infected by 3-5 years of age.
- 80% of population have antibody against rotavirus by age 3.
- More frequent in Winter.
- Patterns : annual epidemics occurring from November to April. (starting from South western area in November to North east)
- Incidence peaks among children ages 4 to 36 months.
- Symptom : vomiting, diarrhea, dehydration. (Repeat infection may occur with milder symptoms)

Epidemiology (2)

- Latent perios: 24-48 hr.
- Infectious period: 3-7 days.
- Asymptomatic infections are common in adults and older children.
- Primary transmission mode is fecal-oral.
- Ingestion of contaminated food or water and contact with contaminated surfaces

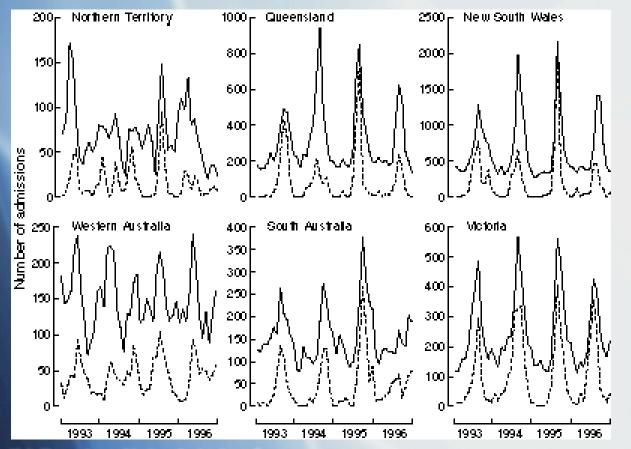


Replication

- Attached to cell receptors contained sialic acid
- Internalized and uncoated via endolysosomes
- Early transcription by viral RNA polymerase occurs inside sub-viral particle
- Resulted in synthesis of (+) mRNAs and are translated in the cytoplasm.
- Reassortment occurs during Early transcription.
- Secondary transcription occurs in cytoplasm in later infection in a conservative fashion.
- Uncapped non-polyadenylated transcripts
- Particles assemble in the cytoplasm 6-7 h after infection
- Budding from the E.R. into internal spaces & are eventually released when the cell lyses.

Pathogenesis

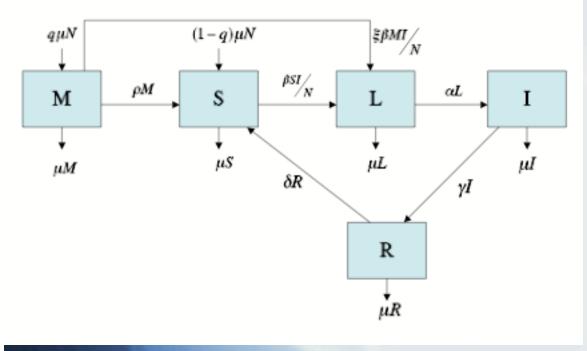
- infect upper two-third of duodenal epithelial cell
- infectious particles are released to intestinal lumen and undergo further replication in distal areas
- death of over 600,000 children annually worldwide



(Picture Source:www.eur.nl/fgg/kgk/gastro/ rotavirus.gif)

History of Rotavirus vaccine

- Aug 1998: FDA approved RotashieldTM, the 1st rotavirus vaccine
- Sep 1998 July 1998: 15 cases of intussusception cases in were reported to VAERS.
- Sep 1998 July 1999: CDC reports preliminary data associating RotashieldTM with intussusception and recommends postponing use.
- Oct 1999: RotashieldTM was withdrawn from the market.
- July 2004: Mexican board of Health approved the use in Mexico of Rotarix ™ – GlaxoSimthKlein's new rotavirus vaccine.


Number of rotavirus positive specimen Australia, 1993–1996

Solid line: hospital admission for acute gastroenteritis in children under five years of age

Dashed line: the number of rotavirus-positive specimens received from participating hospitals in that State, rescaled from the hospital to the State level. (J.B. Carlin et al. MJA 1998; 168: 252-256)

Seasonal pattern

where

 $\beta(t) = \beta_0(1+\beta_1\cos 2\pi(t-\tau/365))$

- M: maternal antibodies class S: Susceptibles L: Latent
- I: Infectious
- R: Recovered

Important parameters

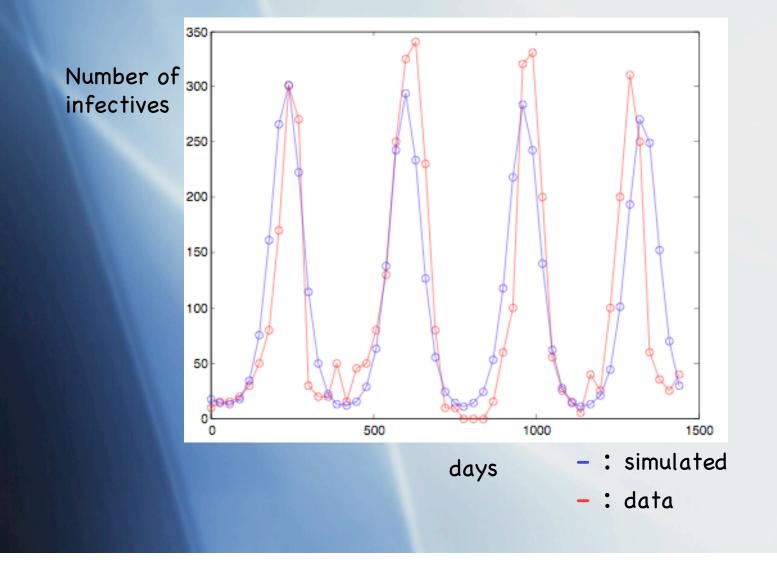
q: breast feeding rate $1-\xi$: protection role of breast milk ρ : average breast feeding period

Model with seasonal pattern of infection

$$M' = q\mu N - \xi\beta MI/N - (\rho + \mu)M,$$

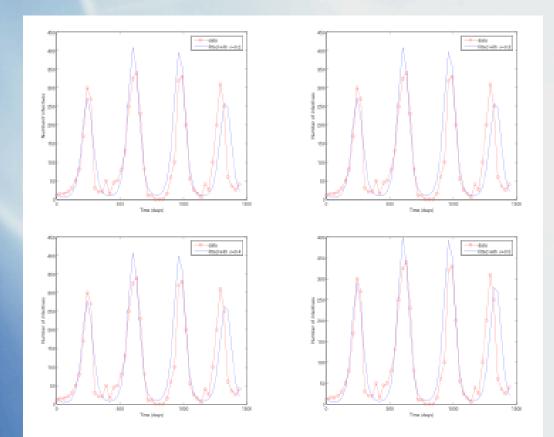
$$S' = \mu[(1 - q)N - S] + \rho M - \beta SI/N + \delta R,$$

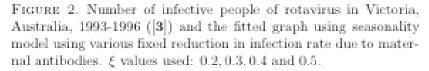
$$L' = \xi\beta MI/N + \beta SI/N - (\alpha + \mu)I,$$


$$I' = \alpha L - (\mu + \gamma)I$$

$$R' = \gamma I - (\mu + \delta)R$$

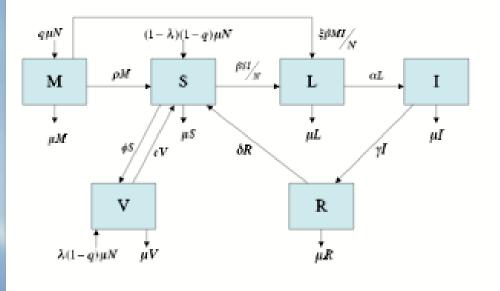
where


$$\beta(t) = \beta_0 (1 + \beta_1 \cos 2\pi (t - \tau/365))$$


Total population, N(t) = M+S+L+I+R

Seasonal pattern of rotavirus infection in Victoria, Australia (1993–1996)

Data fitting

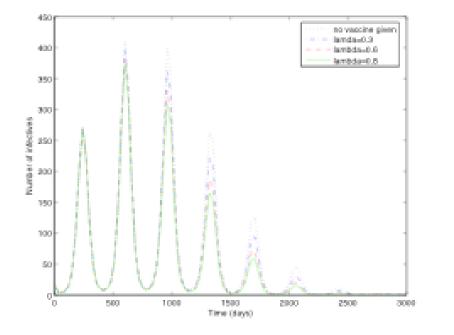


Estimated parameter values for fitting (using data set in Victoria, Australia, 1993–1996)

TABLE 1. Confidence intervals of estimated parameters when $\xi = 0.2, 0.3, 0.4$ and 0.5 respectively

parameters	best-fit values	standard error	95% confidence intervals
ρ	0.0003	0.0000	[0.0003, 0.0003]
	0.0001	0.0000	[0.0001, 0.0001]
	0.0000	0.0000	0.0000,0.0000
	0.0000	0.0000	0.0000,0.0000
β_0	0.2077	0.0000	[0.2077, 0.2077]
	0.2073	0.0000	[0.2073, 0.2073]
	0.2099	0.0000	[0.2099,0.2099]
	0.2070	0.0000	[0.2070, 0.2070]
β_1	0.2217	0.0300	[0.1629, 0.2805]
	0.2235	0.0300	[0.1647, 0.2823]
	0.2266	0.0316	[0.1646, 0.2886]
	0.2353	0.0332	[0.1703, 0.3003]
δ	0.1000	0.0436	[0.0146, 0.1854]
	0.1000	0.0447	[0.0123, 0.1877]
	0.1000	0.0447	[0.0123, 0.1877]
	0.1000	0.0469	[0.0081,0.1919]
γ	0.2028	0.0000	0.2028,0.2028
	0.2026	0.0000	[0.2026, 0.2026]
	0.2055	0.0000	[0.2055, 0.2055]
	0.2032	0.0000	[0.2032, 0.2032]
τ	145.6292	3.5942	[138.5846, 152.6738]
	145.8228	3.5768	[138.8123,152.8333]
	145.7564	3.5411	[138.8159, 152.6969]
	145.4982	3.5180	[138.6030, 152.3934]

Model including "two types" of vaccines model



 λ : neonatal vaccination ϕ : post – birth vaccination

$$\begin{split} M' &= q\mu N - \xi \beta M I/N - (\rho + \mu)M, \\ S' &= \mu [(1 - \lambda)(1 - q)N - S] - \beta S I/N - \phi S + \rho M + \delta R + \varepsilon V, \\ L' &= \xi \beta M I/N + \beta S I/N - (\alpha + \mu)I, \\ I' &= \alpha L - (\gamma + \mu)I, \\ R' &= \gamma I - (\delta + \mu)R, \\ V' &= \lambda (1 - q)\mu N + \phi S - (\varepsilon + \mu)V \\ with \\ N &= M + S + L + I + R + V \\ \beta &= \beta_0 [1 + \beta_1 \cos(2\pi(t - \tau))] \\ \end{split}$$

Simulated results: comparing effects of two vaccines.

Neonatal vaccine VS Post-birth vaccine

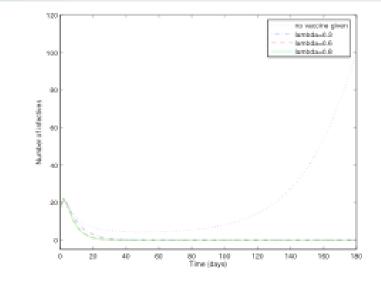


FIGURE 7. Simulated results with various after-birth vaccination rates ($\phi = 0, 0.3, 0.6, 0.8$). Parameters used: $\epsilon = 0.0001$, $\alpha = 0.5$, $\gamma = 0.2$. ρ , β_0 , β_1 and δ are fixed at best-fit values from Table 1.

Rates (lambda & phi) used: 0.3, 0.6 and 0.8

Reproductive ratios VS neonatal vaccine rates using various breast feeding duration (2,3,4 and 5 months)

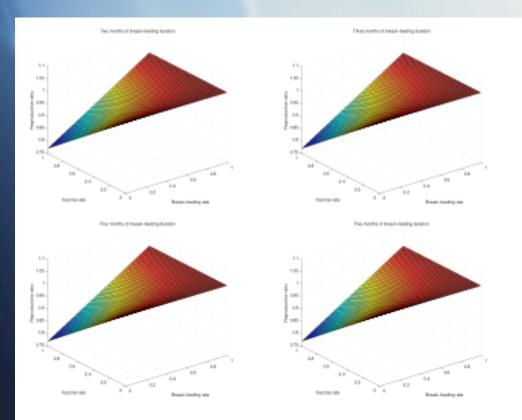


FIGURE 5. Reproductive ratio using neonatal vaccination rate (λ) and breast-feeding rate (q) using various breast-feeding durations (two, three, four and five months) X-axis: neonatal vaccine rate (lambda) Y-axis: breast-feeding rate (q) Z-axis: reproductive ratio Reproductive ratios VS post-birth vaccine rates using various breast feeding duration (2,3,4 and 5 months)

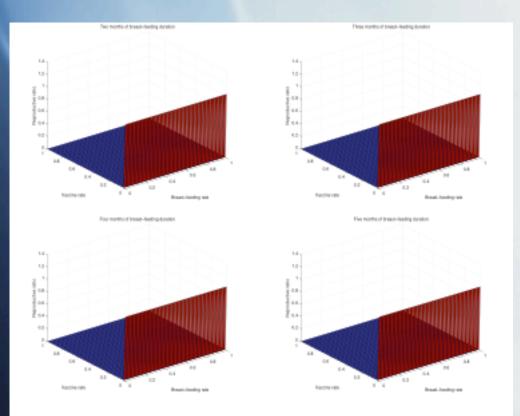
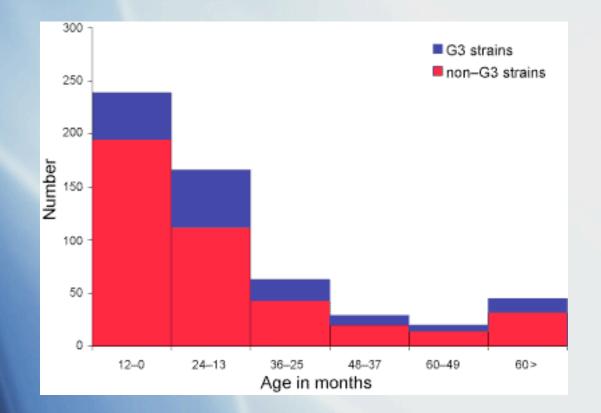



FIGURE 6. Reproductive ratio using post-breast feeding vaccination rate (ϕ) and breast-feeding rate (q) using various breastfeeding durations (two, three, four and five months) X-axis: post-birth vaccine rate (phi) Y-axis: breast-feeding rate (q) Z-axis: reproductive ratio

Pattern #2: Age distribution of rotavirus cases Age distribution versus infecting serotype

C Kirkwood et al. Report of the Australian Rotavirus Surveillance Program 2003-2004 Comm. Dis. Int. Vol 28 No4.

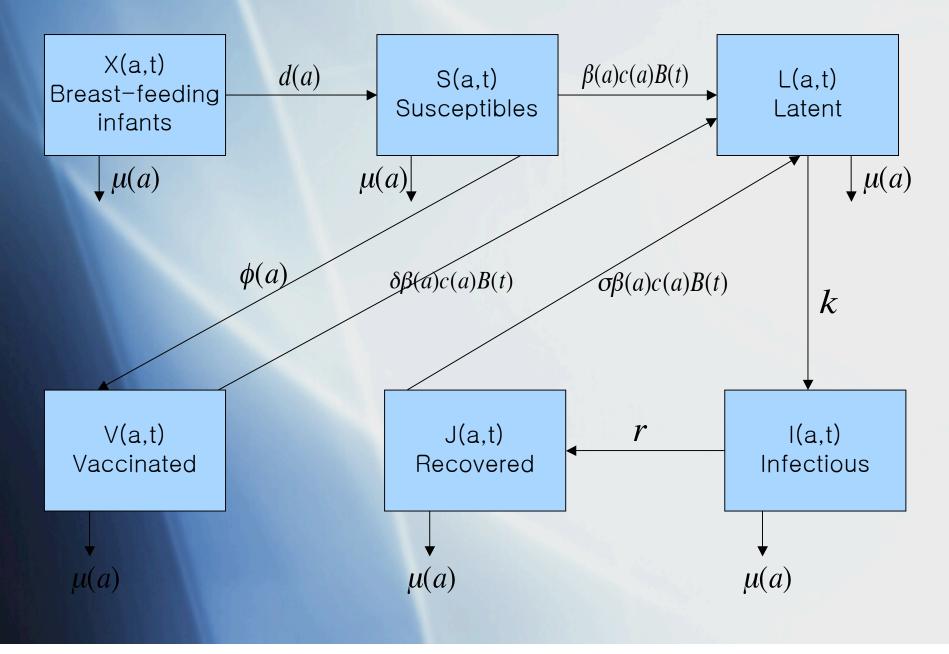
Assumptions

- Population is divided into six groups: breast-fed, susceptible, latent, infective, recovered, and vaccinated.
- All newborns enter either breast-fed or susceptible class and we assume maternal antibody protection against infection.
- Portion of susceptible, $\phi(a)$, is vaccinated but vaccine is incomplete and non-permanent.
- Natural immunity (incomplete and non-permanent) gained from previous infection is assumed.
- Age-dependent mixing : contacts between individuals are driven by age-class activity level ad their density.

Parameters

- Λ : recruitment/birth rate.
- $\beta(a)$: age-specific probability of becoming infected.
- c(a): age-specific per-capita contact rate.
- μ(a): age-specific per-capita mortality rate.
- γ(a): age-specific per-capita recovery rate.

 mixing: p(t,a,a') is probability that an individual of age a has contact with an individual of age a` given that it has a contact with a member of the population


Mixing Rules

 $p(t,a,a') \ge 0$ $\int_{0}^{\infty} p(t,a,a') da' = 1$

c(a) p(t,a,a') n(t,a) = c(a') p(t,a',a) n(t,a')Proportionate mixing:

$$p(t,a,a') = p(t,a') = \frac{c(a')n(t,a')}{\int_{0}^{\infty} c(u)n(t,u)du}$$

Diagram of mathematical model

Age-structured model of rotavirus infection

$$\begin{split} \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) X(t, a) &= -d(a)X(t, a) - \mu(a)X(t, a) \\ \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) S(t, a) &= d(a)X(t, a) - \beta(a)c(a)B(t)S(t, a) - \mu(a)S(t, a) - \phi(a)S(t, a) \\ \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) V(t, a) &= \phi(a)S(t, a) - \mu(a)V(t, a) - \delta\beta(a)c(a)B(t)V(t, a) \\ \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) L(t, a) &= \beta(a)c(a)B(t)[S(t, a) + \sigma J(t, a) + \delta V(t, a)] - [k + \mu(a)]L(t, a) \\ \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) I(t, a) &= kL(t, a) - [r + \mu(a)]I(t, a) \\ \left(\frac{\partial}{\partial t} + \frac{\partial}{\partial a}\right) J(t, a) &= rI(t, a) - \sigma\beta(a)c(a)B(t)J(t, a) - \mu(a)J(t, a) \\ B(t) &= \int_0^\infty \frac{i(t, a')}{n(t, a')}p(t, a, a')da' \end{split}$$

where

$$p(t, a, a') \ge 0,$$
 $\int_0^\infty p(t, a, a') = 1,$
 $c(a)n(a, t)p(a, a', t) = c(a')n(a', t)p(a', a, t)$

Reproductive Ratio (1)

What is basic reproductive number, R_0 ?

the expected number of newly infected that one infectious individual will produce during his (or her) period of infectiousness in a large, 100% susceptible population

$$\Re(\phi) = \int_0^\infty \int_0^\infty \frac{k}{r-k} p_\infty(\tau+h) [e^{-k\tau} - e^{-r\tau}] \beta(h) c(h) [s^*(h) + \delta v^*(h)] dh d\tau$$

where

$$s^{*}(a) = qe^{-\int_{0}^{a}\phi(\tau)d\tau} \int_{0}^{a} d(h)e^{\int_{0}^{h}\phi(\tau)-d(\tau)d\tau}dh + (1-q)e^{-\int_{0}^{a}\phi(\tau)d\tau},$$
$$v^{*}(a) = \int_{0}^{a}\phi(h)s^{*}(h)dh,$$

Basic Reproductive Ratio (2)

Now let's consider without vaccination!

$$R_0 = \int_0^\infty \int_0^\infty \frac{k}{r-k} p_\infty(\tau+h) [e^{-k\tau} - e^{-r\tau}] \beta(h) c(h) [1 - q^{-dh}] dh dr$$

$$\frac{\partial R_0}{\partial q} < 0 \qquad \text{and} \qquad \frac{\partial R_0}{\partial (1/d_0)} < 0$$

When every new born is breast-fed (q=1) or when the length of mean antibody protection period increase we see reduction in basic reproductive ratio.

Local stability analysis of infection-free non- uniform steady state distributions

Theorem 1. The infection-free steady state distribution is l.a.s. if $R(\phi) < 1$.

Proof. We introduce the characteristic equation:

$$\Re(\phi) = \int_0^\infty \int_0^\infty \frac{k}{r-k} p_\infty(\tau+h) [e^{-k\tau} - e^{-r\tau}] \beta(h) c(h) [s^*(h) + \delta v^*(h)] dh d\tau$$

Note that it has negative real solution of λ if and only if G(0)<1 (that is, $R(\phi)^{<1}$) since

$$G'(\lambda) < 0, \quad \lim_{\lambda \to \infty} G(\lambda) = 0, \quad \lim_{\lambda \to -\infty} G(\lambda) = \infty.$$

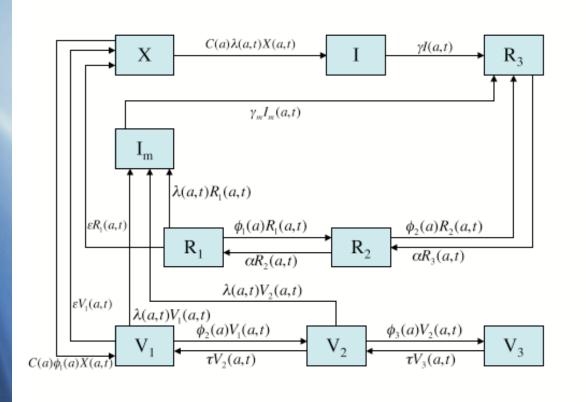
Similarly it has a positive real solution λ if and only if G(0)>1 (that is, $R(\phi) > 1$). Thus the infection free steady distribution is l.a.s. if $R(\phi) < 1$ and unstable otherwise.

Global stability analysis of infection-free non- uniform steady state distributions

Theorem 2. The infection-free steady state distribution is g.a.s. if $R_0 < 1$ where

$$R_0 = \int_0^\infty \int_0^\infty \frac{k}{r-k} p_\infty(\tau+h) [e^{-k\tau} - e^{-r\tau}] \beta(h) c(h) [1 - q^{-dh}] dh dr$$

• Theorem 3. There exists endemic non-uniform steady state distribution if $R(\phi) > 1$.


Three doses and waning immunity?

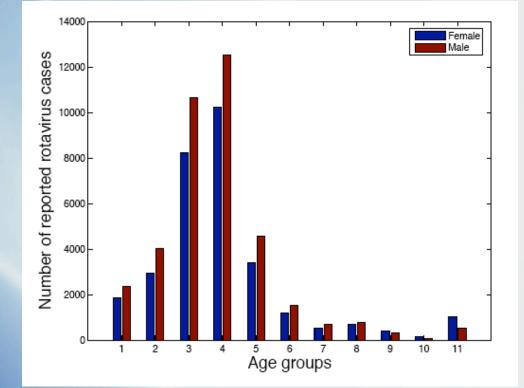
- Keep breast-fed class: [1-D(a)]X(a,t)
- Susceptible class: D(a)X(a,t)
- Primary infection: I(a,t)
- Subsequent infection: I_m(a,t)

- Recovered class with waning immunity: R₃(a,t) --> R₂(a,t) --> R₁(a,t)
 (strong)----->(weak)
- Multiple doses: $V_1(a,t) V_2(a,t) V_3(a,t)$

Model involving subsequent infection and multiple doses of vaccine.

1. Boosting immunization + natural immunity

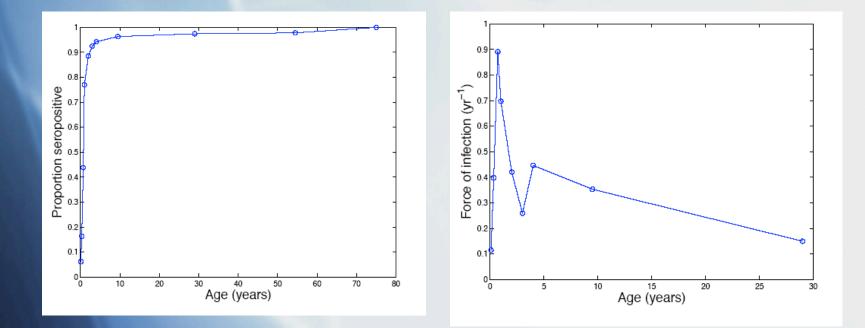
2. Brest-fed infants: protected & non-vaccinated


Discretization on each age group

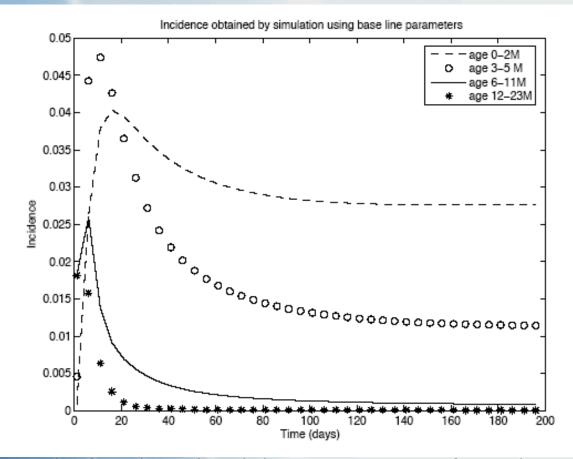
$$\begin{split} X_i &= \int_{a_{i-1}}^{a_i} X(a',t) da', \qquad I_i = \int_{a_{i-1}}^{a_i} I(a',t) da', \qquad I_{mi} = \int_{a_{i-1}}^{a_i} I_m(a',t) da', \\ R_{1i} &= \int_{a_{i-1}}^{a_i} R_1(a',t) da', \qquad R_2 = \int_{a_{i-1}}^{a_i} R_2(a',t) da', \qquad R_{3i} = \int_{a_{i-1}}^{a_i} R_3(a',t) da', \\ V_{1i} &= \int_{a_{i-1}}^{a_i} V_1(a',t) da', \qquad V_{2i} = \int_{a_{i-1}}^{a_i} V_2(a',t) da', \qquad V_{3i} = \int_{a_{i-1}}^{a_i} V_3(a',t) da'. \end{split}$$

And do normalization! i.e. divide them by the total number of individuals of age between $a_{(i-1)}$ and $a_{(i)}$

$$N_i(t)\equiv \int_{a_{i-1}}^{a_i}u(a,t)da=e^{qt}\int_{a_{i-1}}^{a_i}A(a)da:=e^{qt}P_i$$


Estimation of force of infection (1)

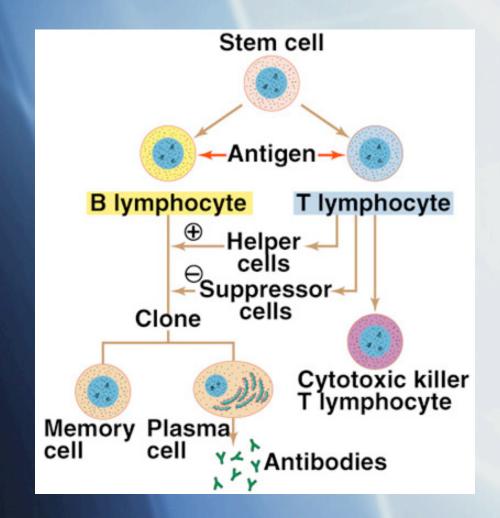
$$\lambda_i = -\ln\left[\frac{1-p_{i+1}}{1-p_i}\right],$$


 p_(i) = proportion of individuals of age "i" who have experienced infection

Estimation of force of infection (2)

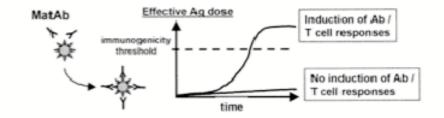

Force of infection among younger ages are higher, especially under three years old...

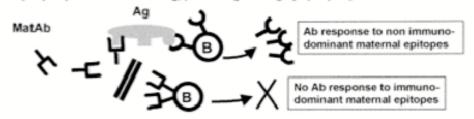
Some simulated work (1)


Primary infection incidence rates of each age group

Some simulated work (2)

 Subsequent infection incidence using base line parameters for each age group (among infants)


Immunological issues (1)


- Upon activation of B cells by antigens, B cells go through proliferating phase to make its own clones
- Finally humoral immunity results in producing short lived plasma cells (making Ab) and some B cells become memory B cells

Immunological issues (2)

1. Neutralisation of live vaccines, depending on MatAb / Ag load ratio

2. Epitope-specific 8 cell masking, preventing binding by epitope specific infant 8 cells

- Dual effects of maternal antibodies
- Protection: they provide some level of protection against rotavirus infection
- Suppressive effect: But higher pre-vaccine Ab titers result in lower rates of sero-conversion rates after vaccination

Conclusion

- Seasonal pattern of epidemic curve
- Vaccine issues : post-birth vaccine is more efficient than neonatal vaccine.
- Local/ Global result using basic reproductive ratio
- Age-structure model: find "optimal" age window for vaccination
- Breast-feeding: longer /more breast feeding help to eradicate rotavirus infection
- Maternal antibody : its protection role and relation to immunization schedule is important.

References

[1] E. Shim, Z. Feng, M. Martcheva and C. Castillo-Chavez. An agestructured model of rotavirus with vaccination. (submitted to JMB)

[2] E. Shim, H.T.Banks and C. Castillo-Chavez. Seasonality of rotavirus infection with its vaccination. AMS contemporary book series. (to appear)

Future Directions

- PDE-> ODE for simulated works of three doses model. (explore the impact of 2,4 and 6 months old schedule of Rotateq / Rotarix)
- Study Geographic pattern and find driving forces (weather, humidity, travel?)
- Impact of maternal antibodies is always important

Acknowledgement

- Dr. C. Castillo-Chavez, Dr. H.T.Banks, Dr. Z. Feng and Dr. M. Martcheva
- Arizona State University and MTBI (Mathematical and Theoretical Biology Institute)
- SAMSI and North Carolina State University